Control of Directionality in Streptomyces Phage φBT1 Integrase-Mediated Site-Specific Recombination
نویسندگان
چکیده
Streptomyces phage φBT1 integrates its genome into the attB site of the host chromosome with the attP site to generate attL and attR. The φBT1 integrase belongs to the large serine recombinase subfamily which directly binds to target sites to initiate double strand breakage and exchange. A recombination directionality factor (RDF) is commonly required for switching integration to excision. Here we report the characterization of the RDF protein for φBT1 recombination. The RDF, is a phage-encoded gp3 gene product (28 KDa), which allows efficient active excision between attL and attR, and inhibits integration between attB and attP; Gp3 can also catalyze topological relaxation with the integrase of supercoiled plasmids containing a single excision site. Further study showed that Gp3 could form a dimer and interact with the integrase whether it bound to the substrate or not. The synapse formation of attL or attR alone with integrase and Gp3 showed that synapsis did not discriminate between the two sites, indicating that complementarity of central dinucleotides is the sole determinant of outcome in correct excision synapses. Furthermore, both in vitro and in vivo evidence support that the RDFs of φBT1 and φC31 were fully exchangeable, despite the low amino acid sequence identity of the two integrases.
منابع مشابه
An Efficient Procedure for Marker-Free Mutagenesis of S. coelicolor by Site-Specific Recombination for Secondary Metabolite Overproduction
Streptomyces bacteria are known for producing important natural compounds by secondary metabolism, especially antibiotics with novel biological activities. Functional studies of antibiotic-biosynthesizing gene clusters are generally through homologous genomic recombination by gene-targeting vectors. Here, we present a rapid and efficient method for construction of gene-targeting vectors. This a...
متن کاملTandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination
We describe a site-specific recombination-based tandem assembly (SSRTA) method for reconstruction of biological parts in synthetic biology. The system was catalyzed by Streptomyces phage φBT1 integrase, which belongs to the large serine recombinase subfamily. This one-step approach was efficient and accurate, and able to join multiple DNA molecules in vitro in a defined order. Thus, it could ha...
متن کاملGenome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe
Bacteriophages are the source of many valuable tools for molecular biology and genetic manipulation. In Streptomyces, most DNA cloning vectors are based on serine integrase site-specific DNA recombination systems derived from phage. Because of their efficiency and simplicity, serine integrases are also used for diverse synthetic biology applications. Here, we present the genome of a new Strepto...
متن کاملRecombination directionality factor gp3 binds ϕC31 integrase via the zinc domain, potentially affecting the trajectory of the coiled-coil motif
To establish a prophage state, the genomic DNA of temperate bacteriophages normally becomes integrated into the genome of their host bacterium by integrase-mediated, site-specific DNA recombination. Serine integrases catalyse a single crossover between an attachment site in the host (attB) and a phage attachment site (attP) on the circularized phage genome to generate the integrated prophage DN...
متن کاملIdentification of a Specific Pseudo attP Site for Phage PhiC31 Integrase in Bovine Genome
Background: PhiC31 integrase system provides a new platform in various felid of research, mainly in gene therapy and creation of transgenic animals. This system enables integration of exogenous DNA into preferred locations in mammalian genomes, which results in robust, long-term expression of the integrated transgene. Objectives: Identification of a novel pseudo attP site. Materials and Methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013